
System1 Embedded Search SDK
Segments
A segment is the identifier used in embedded-search to identify a bucket of your traffic. This key
is used to provide the correct configuration of results on your pages, as well as to identify your
traffic in our reporting system. Work with your partnership manager to configure your segments.

Regions
The embedded search service is built around the “regions” on your page. In HTML notation,
these are the container <div>s that the javascript will place the content like ads, organic results,
and related searches.

A very simple search page will have exactly one content div, typically called the “mainline” div.
It’s also possible to have a “sidebar” div where things like related searches will be displayed.

For some implementations, you only want ads and you want them to be placed above and
below your mainline search results. We typically call those content divs “mainline-top” and
“mainline-bottom”. You can still have a “sidebar” content div in this case, too.

These are just guidelines - there’s no set requirement of what the divs are named and where
they are located on the page, as long as you communicate it clearly with your account manager
and stay consistent on a per-segment basis.

Implementation Steps

Communicate Requirements to your Account Manager
The first step is to share details of your proposed implementation with your account manager.
The key things to include are:

1. The fully qualified domain name that will run the embedded search javascript (e.g.
www.dogpile.com)

2. The regions on your SERP (see the next section)
3. The combination of ads and/or organic results you want to see rendered on the page.

Get Parameters from your Account Manager
After communicating all the requirements to your Account Manager, they should give you back
the following things:

1. Your partner ID.
2. Your access key (make sure to keep this private!)
3. Your segment name(s).

http://www.dogpile.com/

4. Your region names.

JavaScript Changes
Now you’re ready to finish the integration. After your web server has calculated the signature
token using the access key (see the section below on the Authentication Algorithm), the web
page returned to the browser client will include a few lines of JavaScript required to request and
render search results.

Include reference to System1 JS
In your web application include a reference to System1’s client-side search results JS at the end
of the body tag, the JS includes configuration settings specific to your segment.

<script async type="text/javascript"
src="https://s.flocdn.com/@s1/embedded-search/embedded-search.js">
</script>

Construct page elements
The System1 JS will execute an asynchronous client-side call to System1 for search results,
and the JSON response will be used by the System1 JS to build the page markup that makes
up the Search modules. All search results will render simultaneously on the page. For each
search results container include a <div> on the page where it should appear. For each <div>
include the data-s1search attribute that matches the containers specified to you by your
account manager. Sample HTML:

<div data-s1search="mainline-top"></div>
<div data-s1search="mainline-bottom"></div>
<div data-s1search="sidebar"></div>

Configure s1search() request
The parameters you include in the s1search() call will be passed to System1’s search service to
retrieve search results. Include the script block to call s1search(), as seen in the below example,
in the <head> tag of your page.

Sample s1search() call and parameters

<script>
 function onResolved() {
 console.log('completed');
 }

 function onRejected(msg) {

 console.error(msg);
 }

 window.s1search = window.s1search || function () {
(window.s1search.q = window.s1search.q || []).push(arguments) };

 window.s1search('config', {
 category: "web",
 domain: "{{ your domain }}",
 partnerId: {{ your partner id }},
 isTest: true,
 onComplete: onResolved,
 onError: onRejected,
 query: "{{ query }}",
 segment: "{{ segment }}",
 signature: "{{ csr signature method }}"
 });
 </script>

Key parameters:

Key Description Accepted Values Default

gdprOptIn This parameter specifies whether
the publisher has obtained
consent from users from EU
countries, as specified by GDPR
(https://www.eugdpr.org) for
processing of his or her personal
data, including writing cookies
and personalization tracking.

● Set to false, it means the
publisher has not obtained
consent per GDPR
requirements

● Set to true, it means the
publisher has obtained
consent per GDPR
requirements

Note: This parameter only affects
users originating in EU countries

Boolean, true or false Optional.
Default is
false in EU
countries.
(This
parameter is
ignored in
non-EU
countries.)

https://www.eugdpr.org/

as determined by IP
address/geolocation.

domain The fully qualified domain that this
implementation is embedded in.

String Required

partnerId A unique identifier for you; mainly
related to billing purposes.

Integer Required

query The user’s search query. Ensure
that this is the same exact query
term that was used to generate
the signature value below.

String Required

querystringPara
ms

Where the SDK should look for
the page and query string
parameters in the URL. For
example, if “page” is set to “p” and
“query” is set to “s” then the url
http://www.dogpile.com/?s=dogs&
p=2 means the query is for “dogs”
and the page number is two.
Whatever is not specified gets the
default value.

Object with “page”
and “query” attributes

{“page”:
“page”,
“query”: “q”}

segment Work with your Partnership
Manager to obtain your segment.

String Required

signature Encoded hashed value of
timestamp, access key, and query
terms.

String Required

category Sets the category for the user’s
search.

web, images, video,
news, shopping

web

subId Supplemental subId parameter
used in addition to sub params on
the source page url. Must be
configured; work with your
Partnership Manager to enable.

String Optional

clickTrackingUrl This is the URL that will contain
the information you want to
receive on a end-user click. For

String Optional

http://www.dogpile.com/?s=dogs&p=2
http://www.dogpile.com/?s=dogs&p=2

more information on this topic,
refer to this section.
Limit the length of the URL to
1000 chars or less.

isTest Used to indicate to content
providers that the request is a test
and should not be included in
revenue collection.

Boolean, true or false false

onComplete This callback is invoked once the
results have been rendered. It will
contain additional information
about the results that were
returned. Further details will be
forthcoming.

JavaScript callback Optional

onError If there are any errors or warnings
that occurred during the call, this
callback will be invoked with a list
of those errors and warnings.

JavaScript callback Optional

Note on Testing from Staging & Development Environments
If you have a staging or development environment you want to setup your integration with, you
can do so with the following steps:

1. Pass in the domain parameter of the production domain. So, let’s say you’re serving
live traffic on www.system1.com, and you want to do dev work on dev.system1.com.
Set the domain in the s1search call to www.system1.com.

2. Set the isTest flag to true.

Signing the Request
System1’s embedded-search API requires you to sign all requests. This allows the API to
validate that the requests originated from your application, and prevents unauthorized access to
the API using your credentials. Without a valid signature, the requests will be rejected, and no
results returned.

Prerequisites:
- A System1 search segment
- A System1 search access key
- The system clock on each server that signs a request to be accurate within a maximum

deviation of 1 minute.
- The signature is a specially formed binary hash of the following three values:

1. Request date and time
2. Access key/token
3. Query term(s)

Note: The query term used to generate the signature must be the exact same query term that is
passed to the s1search() request. For example, if the query term will be trimmed of trailing
spaces before making the request to s1search(), ensure this happens prior to generating the
signature.

Algorithm
The basic algorithm for creating the signature starts with creating a timestamp as follows:

1. Start with the UTC/GMT time
2. Round to the nearest minute (30 seconds or greater rounds up, otherwise round down)
3. Format the time as a string: yyyyMMddHHmm

○ yyyy - 4 digit year
○ MM - 2 digit month, 01-12
○ dd - 2 digit day, 01-31
○ HH - 2 digit hour, 24-hour clock, 00-23
○ mm - 2 digit minute, 00-59

4. Concatenate the values together in the following order:
○ timestamp
○ access key
○ query term(s) (if you have no query terms use the empty string)

5. Encode concatenated string into a UTF-8 byte encoding.
6. Perform a SHA-256 (preferred) or SHA-1 hash of the UTF-8 encoded string value.
7. Encode the binary hashed value using url-safe base-64 encoding and trim any padding

characters (“=“ sign in base64); see http://tools.ietf.org/html/rfc4648#section-5
○ Caution: some languages’ hash functions default to a hex output instead of a

binary output (e.g. PHP is a common language that does this); ensure you are
base64 encoding the binary hash output, not the hex representation.

○ Note: url-safe base64 encoding is a variation on standard base64 encoding and
results in slightly different output. Consult your language documentation for an
implementation or review the link above.

Example implementations in several programming languages can be found here for reference:
http://www.infospace.com/partners/sdk/csr/signingSample.html.

http://tools.ietf.org/html/rfc4648#section-5
http://www.infospace.com/partners/sdk/csr/signingSample.html

Below is a step by step sample of the outputs during signature construction that can be used to
help troubleshoot any issues you may be having.

Starting with the following sample inputs:

Time: January 3rd, 2020 13:28:56
Token: VKxZxMDp_hx2tchU1M6eWRfn
Query Term: ipad

1. Start with the UTC/GMT time -- January 3rd, 2020 13:28:56
2. Round to the nearest minute -- January 3rd, 2020 13:29:00
3. Format the time as a string -- 202001031329
4. Concatenate the values together --

202001031329VKxZxMDp_hx2tchU1M6eWRfnipad
5. Encode concatenated string into a UTF-8 byte encoding --

202001031329VKxZxMDp_hx2tchU1M6eWRfnipad
6. Perform a SHA-256 (preferred) or SHA-1 hash of the UTF-8 encoded string value.

NOTE: This string representation of the hashed value may look different depending on
what coding language you’re using to compute the hash. The important thing (also noted
above) is to make sure that you’re using the binary hash output and NOT the hex
representation when moving onto step 7 --
\x1d\x86\xca\x17\x14,\x1dY\x1f"\xf7\xe7\xd6}k\xf4G\xb5\xa07pd\xa8
\x8eM_UoVR\xb7\xaa

7. Encode the binary hashed value using url-safe base-64 encoding and trim any padding
characters -- HYbKFxQsHVkfIvfn1n1r9Ee1oDdwZKiOTV9Vb1ZSt6o

Click Tracking in Search Results
Goal: gain deeper insights to user behavior on an System1 search experience with our Site
Tracking solution. System1 enables partners to receive data related to a click event for reporting
and analysis.

How it works
The partner provides a click handler URL that the System1 click handler calls every time a click
event occurs. This URL may contain custom data via query string parameters that a partner
needs with every click, (e.g. Token) that will be passed back every time the URL is called. In
addition to any custom data, the System1 click handler can supply a number of variables that
characterize that particular click.

Supported parameters:

Key Description Type Sample value

{info[domain]} The fully qualified domain
this click happened on.

String www.dogpile.com

{info[page]} The page number that this
click happened on (zero
indexed).

Integer 0

{info[query]} The query on the current
serp.

String dogs

{info[query_category]} The query category (web,
images, news, videos,
etc.)

String web

{info[segment]} The segment the click
happened on.

String info.0001

{info[subsequent_search]} Whether or not this page
is a subsequent search

Boolean false

{requestu_args[ip]} The end user’s IP address IP
Address

10.23.125.23

{requestu_args[user_id]} The user’s cookie. This
cookie is unique to the
browser and has a 1 year
expiry.

String FqUyptgETnJXSgq
C3gxk

{info[persist_args][gclid]} The Google Ads click
tracking parameter, gclid.

String ….

{info[persist_args][msclkid]} The Bing Ads click
tracking parameter,
msclkid.

String ...

{extra_args[p]} Whether or not this is a
paid or non-paid click

Integer 1

{extra_args[b]} The backend that the ad
or algo result comes from.

String google

{extra_args[position]} The zero-indexed position
of the ad or algo result
that was clicked.

Integer 1

{extra_args[advertiser_domain]
}

The Bing Ads advertiser
domain for a paid click.

String www.domain.com

To begin, pass the URL in as the clickTrackingUrl parameter in s1search() call. If you are a
hosted partner, provide your partnership manager with your click handler URL.

A sample URL used to forward the click to the partner click handler looks like this (The example
below is for documentation purposes only, and is not intended to be used):

http://partner.clickserver.com/ClickHandler?partnerCustomParameter=val
ue1&secondParameter=value2&page={info[page]}&query={info[query]}&ip={r
equestu_args[ip]}&paid={extra_args[p]}&backend={extra_args[b]&position
={extra_args[position]}

Which would call your server as the following:

http://partner.clickserver.com/ClickHandler?partnerCustomParameter=val
ue1&secondParameter=value2&page=0&query=dogs+and+cats&ip=139.31.222.12
&paid=1&backend=google&position=2

